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Abstract 
Cross-Layer Design (CLD) is a new paradigm for network 
architecture that allows us to make better use of network 
resources by optimizing across the boundaries of traditional 
network layers. Previous work has shown that applying CLD 
to mobile multimedia communication systems may lead to 
significant performance improvements. In this paper we also 
consider the other side of the coin, i.e., the additional 
computation and communication overhead introduced by 
CLD. We evaluate the performance improvements and the 
cost of cross-layer optimization using a wireless multi-user 
video streaming example. 

1. Introduction 
Next generation wireless systems will have to support 
applications of increasing complexity and with tighter 
performance requirements, such as real-time or streaming 
video, interactive navigation in 3D virtual worlds and 
ubiquitous computing. To design efficient and cost-effective 
network architectures the research community has recently 
proposed a new paradigm, called Cross-Layer Design (CLD), 
which is based on information exchange and joint 
optimization among multiple protocol layers. CLD exploits 
layer dependencies and therefore allows us to propagate 
ambient parameter changes quickly throughout the protocol 
stack. Hence, it is especially well-suited to mobile 
multimedia applications where the characteristics of the 
wireless medium and the application requirements vary over 
time. 

Previous applications of CLD to mobile multimedia 
communication, e.g. [1],[2], have mostly focused on 
optimizing individual layers based on information from 
adjacent layers. [3] presents a cross-layer architecture for 
wireless streaming video that jointly optimizes the 
application, the data link and the physical layer. Parameters 
from different layers are abstracted and provided to a cross-
layer optimizer which selects the values of the protocol 
parameters maximizing the user perceived video quality. The 
objective function may be selected to reflect different goals, 
e.g., it may maximize the quality of individual users or the 
average quality of all the users.  
    While previous work often succeeds in showing the 
benefits of applying CLD, it often lacks of an accurate 
analysis of the additional cost that is to be paid to perform the 
optimization and to gather the relevant parameters from 
multiple layers and network locations.  
    Multiple components contribute to the cost of CLD. First, 
network architectures with cross-layer optimizations are less 

modular and therefore more difficult to manage or upgrade 
[4]. Second, solving the optimization problem may result in 
additional delay due to a broad exploration of the parameter 
domain space. Third, gathering the parameters that are 
relevant to the optimization may result in non negligible 
transmission overhead. 

This paper focuses on the cost due to applying CLD and 
exploits tradeoffs between cost and performance. We 
consider a distributed video streaming cross-layer 
architecture and trade performance expressed in terms of 
average Peak Signal to Noise Ratio (PSNR) versus the 
communication cost associated with the transmission of a 
rate-distortion profile from the video server. Furthermore, we 
exploit the dependency of the optimization computational 
complexity with respect to different resource allocation cases 
and number of users.  

2. Video Streaming Cross-Layer Architecture 
Streaming video to mobile terminals requires a highly 
efficient and optimized architecture able to provide each user 
with a good quality video. We consider a simplified single-
cell architecture that delivers videos from remote servers to K 
mobile terminals located in a cell through a base station that 
assigns the wireless channel resources to the different users. 

The dynamic nature of the wireless channel and the 
diversity of frames in a video stream make it necessary to 
dynamically adapt the network configuration based on the 
current conditions of the environment. In [3] we have 
proposed a CLD architecture (Figure 1) with a component, 
called cross-layer optimizer (CLO), that periodically selects  
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Figure 1: CLD Architecture. 



the optimal parameter settings of the different layers. The 
CLO uses abstractions of different layers and decides the 
resource assignment for each video stream.  

As an abstraction of the application layer we use the rate-
vector and distortion matrix (RD profile) introduced in [5] 
that describes the reconstruction quality, expressed in PSNR, 
if any of the frames in a GOP (Group of Pictures) is lost and 
the decoder displays the most recently decoded frame 
instead. The RD profile is computed at encoding time and 
transmitted as side information along with the video stream. 
As described in [3] the degrees of freedom on the data link 
and physical layers are abstracted into the transition 
probabilities of a two-state Markov burst loss (Gilbert-Elliot) 
model. 

3. Cross-Layer Optimization 
Let us consider a wireless video-streaming scenario with 
three users, each requesting a different video from the 
streaming server, namely Mother & Daughter (MD), 
Carphone (CP) and Foreman (FM). All three videos are in 
QCIF resolution (176×144). Each sequence has 300 frames 
and the frame rate is 30 fps. The videos are pre-encoded at 
two different target source rates of 100kbps and 200kbps, 
using the Xvid codec [6]. Each GOP has 15 frames, including 
one I-frame and 14 P-frames. Table 1 gives an overview of 
the main characteristics of the video sequences. The average 
PSNR between the encoded and the displayed video 
sequence is used as a performance measure. 

 
Table 1: Main characteristics of the test video sequences 

Video Sequence Length(s) Frames 
PSNR(dB) 

100 kbps 

PSNR (dB)

200 kbps 

FM 10 300 32.45 34.67 
CP 10 300 33.32 36.78 
MD 10 300 36.31 39.80 

 
On the radio link layer, it is assumed that the total 
transmission symbol rate in the system is 300k symbols/s. 
The data packet size is equal to 54 bytes, which is the 
specified packet size of the IEEE802.11a or HiperLAN2 
standard. The channel coherence time is assumed to be 50ms 
for all the three users, which approximately corresponds to 
pedestrian speed for 5GHz carrier frequency. The residual 
packet error rate can be described as a function of the 
average SNR [7]. User position dependent path loss and 
shadowing commonly observed in wireless links are taken 
into account by randomly choosing the corresponding 
average SNR for each user.  
   We define the total transmission bit rate constraint KmR ,

max for 
modulation scheme m and K users to be 

RKnR Km ⋅⋅=,
max             (1)  

where n is bits per symbol for modulation scheme m, K is the 
total number of users, R is the average symbol rate for one 
user. For three users and R=100k symbols/sec, we 
have 3003,

max =BPSKR kbit/sec and 6003,
max =QPSKR kbit/sec for 

BPSK and QPSK, respectively.  

    We define the possible set of transmission bitrates kC  for 
any user k as 

{ }rrrrCk 3,2,5.1,,0=         (2) 
where r in our experiments will be 100 kbit/sec. The total 
rate constraint, together with the set of transmission rates 
gives us 26 possible rate allocations (Table 2).  
If the available transmission rate exceeds the source rate, the 
most important frames of the GOP are repeatedly 
transmitted. 
 
Table 2: Possible cases of rate allocation among three users 

Transmission Data Rate (kbps) 
User 

 
Case 

 
Modulation 

Scheme 1 2 3 
1 BPSK 100 100 100 
2 BPSK 100 200 0 
3 BPSK 100 0 200 
… … … … … 
13 BPSK 0 0 300 
14 QPSK 200 200 200 
15 QPSK 0 300 300 
16 QPSK 300 0 300 
… … … … … 
26 QPSK 300 150 150 

 
    Each of the cases in Table 2 may lead to a number of 
operational modes depending on the available transmission 
rate of the users. For example, in case 2, user 2 has an 
available rate of 200 kbit/sec, which can be used either to 
send the low rate video with repetition, or the high rate video 
without repetition. In total, we have 72 different modes of 
operation (parameter tuples) among the three users. 
    The cross-layer optimizer selects for each GOP the 
optimal parameter values that maximize the user-perceived 
video quality. This requires computing for each user and 
each parameter selection the expected quality at the receiver, 
which can be obtained in one of the following ways: 

1. Computing the expected reconstruction quality (in PSNR) 
given by  

∑
=

=
l

i
ii DpPSNR

1
exp

 (3) 

where l is the number of different loss patterns [8], ip is the 

loss pattern probability, iD  is the resulting reconstruction 
quality for loss pattern i  derived from the distortion matrix 
[5]. The probability of a particular loss pattern ip is 
computed from the transition probabilities of the Gilbert-
Elliot model as described in [8]. 

2. Computing the Expected Number of Decodable Frames 
(ENDEF) in one GOP given by: 

∑
=

=
l

i
ii dpENDEF

1

           (4) 

where id is the number of decodable frames for a particular 
loss pattern. ENDEF provides an approximation of the 
expected PSNR values in case the distortion information 

iD is not available.  



24 26 28 30 32 34 36
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

PSNR 

C
D

F 

CLO PSNR 
CLO ENDEF 
w/o CLO 

scenario 1  scenario 2  scenario 3 

4. Performance Analysis 
In this section we compare the performance gain obtained by 
applying cross-layer optimization for the two cases where 
expected PSNR (CLO PSNR) and ENDEF (CLO ENDEF) 
are used by the optimizer to predict video quality. The 
objective function is chosen to be the average PSNR of all 
the users:  

∑
=

=
K

k
kK

F
1

)~(PSNR1)~( xx                                           (5) 

where )~(xF is the objective function with the cross-layer 

parameter tuple X~~∈x . X~ is the set of all possible parameter 
tuples abstracted from the protocol layers. The decision of 
the optimizer can be expressed as 

)~(~~maxarg~ x
x

x Fopt
X∈

=                             (6) 
where optx~  is the optimum parameter tuple which maximizes 

the objective function. 
    We analyze three different scenarios. Fig. 2 shows the 
CDF of the average PSNR for all the three scenarios, each 
one based on 1000 simulation runs. In the first scenario all 
the users have very bad channel conditions. The received 
SNR varies between 0dB and 5dB. As seen from the CDF, 
average PSNR increases about 2 dB for cross-layer 
optimization with rate-distortion side information (CLO 
PSNR), compared to the case of without optimization (w/o 
CLO). In the second scenario, simulations are performed 
with random user SNR in a large range (0 to 25 dB) for all 
the users. The curve representing CLO without RD side 
information lies approximately half way between the other 
two curves for both scenario 1 and 2. In the third scenario, all 
the users have very good channel conditions, with random 
user SNR between 20 dB and 25 dB. Also in this case we 
observe an average PSNR improvement of about 2 dB for 
cross-layer optimization with RD side information, compared 
to the case without optimization. In this case the optimizer 
can take advantage of the good channel condition by 
choosing the higher source rate videos. Note that the 
performance without RD side information is worse in this 
case because of the lower correlation between the number of 
decodable frames and the resulting PSNR. 

 

 

 

 

 

 

 

 

 
 
Figure 2: CDF of average PSNR for random received SNR 
equal to 0dB to 5dB (scenario 1), 0 to 25 dB (scenario 2) and 
20 to 25 dB (scenario 3). 

As the performance of the optimization depends on the 
accuracy of PSNR prediction, we now consider the relative 
PSNR prediction error for our proposed mode, which is 
defined as the ratio of the absolute PSNR prediction error and 
the actual PSNR: 

actual

actual
relerr PSNR

PSNRPSNR
PSNR

−
= exp               (7) 

where expPSNR is the expected PSNR computed at the base 

station from (3), and actualPSNR is the actual PSNR between 
the original and the received video frames at the clients. We 
assume previous frame concealment in case of a frame loss. 
Figure 3 shows the CDF of relative PSNR prediction error 
for Packet Loss Rates (PLR) of 3% and 10%, with average 
burst lengths of 5 and 28, respectively. Results are based on 
1000 simulation runs for each of the video sequences at a 
particular PLR. The source rate of all the videos is 
100kbit/sec. For 3% PLR, the prediction error is less than 
10% for more than 95% of the cases for all three video 
sequences.  
    From Fig. 2 and 3, we conclude that although the 
prediction error in (7) depends on the loss rate, the gain due 
to CLO PSNR compared to the case without CLO remains 
constant (2dB average) which can be attributed to the fact 
that the optimization spans across multiple users. On the 
other hand, the gain of applying CLO ENDEF varies with 
different values of the SNR due to the changing correlation 
between the number of decodable frames and actual PSNR at 
different loss rates and for different video sequences. 
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Figure 3: CDF of relative PSNR prediction error for PLR = 
3% and 10%, for the MD, CP and FM video sequences. 

5. Computational cost 
The additional computational cost of cross-layer 

optimization is mainly due to computing the objective 
function (average expected PSNR or ENDEF) for all possible 
cases of parameter settings. In our implementation, we 
compute and store the possible expPSNR values into an array 

at the beginning of a GOP and evaluate the average 
expPSNR  for all abstracted parameter tuples. In our 

experiments, the three optimization parameters: modulation 



scheme, source bitrate and channel bitrate have 2, 2 and 5 
possible realizations, respectively. For our complexity 
analysis we define the normalized execution time as 

rsmKTK ⋅⋅⋅=           (8) 
where K is the number of users, m is the number of different 
modulation schemes, s is the number of possible cases of 
source bitrate and r is the number of possible cases of 
channel bitrate. Table 3 shows the number of cases of 
resource allocation and normalized execution time for cross-
layer optimization for different number of users.  
 

Table 3: Number of CLO cases and normalized execution 
time for different number of users. 

Number of user Number of 
operation modes 

Normalized 
execution time 

2 13 2*2*2*5 
3 72 3*2*2*5 
4 345 4*2*2*5 
5 1610 5*2*2*5 
6 7811 6*2*2*5 
7 36372 7*2*2*5 
8 169135 8*2*2*5 
9 787554 9*2*2*5 

10 3507183 10*2*2*5 

Although the number of operational modes increases very 
rapidly with the number of users, the time to evaluate the 
different cases increases almost linearly. This is because the 
normalized execution time can be approximated as the 
number of times we have to compute expPSNR in (3) or 

ENDEF in (4) for a given set of parameters, as this is the 
computationally most expensive part of the optimization. The 
computational cost of the remaining task, which involves 
computing and comparing the objective function for different 
operation modes (eq. 5) can be neglected for a small number 
of users, e.g. 10≤K . For a large number of users, however, 
this becomes increasingly important, as the number of 
operation modes increases exponentially with the number of 
users. 

6. Communication cost 
The communication overhead of CLO is mainly due to 

the transmission of parameter abstractions across the 
network. In particular there is an overhead due to 
transmitting the rate-distortion side information from the 
video server to the cross-layer optimizer. Fig. 4 shows the 
overhead for different source rates. Here we assume one 
GOP every half a second and every GOP consisting of only 
one I and else P frames. The overhead is low, but increases 
linearly with the number of frames in a GOP.  

7. Conclusions 
In this paper we have analyzed the tradeoff between 
performance and cost of CLD for a wireless multi-user video 
streaming application. We have compared the performance 
gain obtained when applying cross-layer optimization with 
the case where no optimization is applied for two 
abstractions of the application layer parameters. In one case, 
the CLO computes the expected PSNR using a distortion 

profile that is derived when the video is encoded and sent as 
side information. In the other case the CLO uses an 
approximation of the PSNR based on the expected number of 
decodable frames. As expected, the analysis shows that the 
optimization using the distortion profile provides higher gain 
due to the more accurate calculation of the expected video 
quality. However, the distortion profile must be transmitted 
from the server with a transmission overhead. Moreover, it is 
not available in applications that require real-time encoding. 
Our analysis shows that using the expected number of 
decodable frames still offers a valid gain with respect to the 
case without CLO especially in the case of channels with low 
SNR. We also observe that for a small number of users, the 
complexity of the system is a linear function of the number 
of users. As the number of user increases, however, the 
relationship deviates from linearity.  
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Figure 4: Traffic overhead of sending RD side information as 
a function of GOP size.  
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